

dwim: Location aware application launcher

The dwim program is a location aware application launcher. To use it you
are required to create a profile at ~/.dwimrc. This profile is a simple
Python [http://en.wikipedia.org/wiki/Python_(programming_language)] script that defines which applications you want to start automatically,
in which order the applications should start and whether some applications
should only be started when your computer is on a specific physical location.
The location awareness works by matching a unique property of the network that
your computer is connected to (the MAC address [http://en.wikipedia.org/wiki/MAC_address] of your current network
gateway [http://en.wikipedia.org/wiki/Gateway_(telecommunications)]).

Every time you run the dwim program your ~/.dwimrc profile is evaluated
and your applications are started automatically. If you run dwim again it
will not start duplicate instances of your applications, but when you quit an
application and then rerun dwim the application will be started again.

	Installation

	Usage
	Command line interface

	Creating a profile

	Location awareness

	About the name

	Contact

	License

Installation

The dwim package is available on PyPI [https://pypi.python.org/pypi/dwim] which means installation should be as
simple as:

$ pip install dwim

There’s actually a multitude of ways to install Python packages (e.g. the per
user site-packages directory [https://www.python.org/dev/peps/pep-0370/], virtual environments [http://docs.python-guide.org/en/latest/dev/virtualenvs/] or just installing
system wide) and I have no intention of getting into that discussion here, so
if this intimidates you then read up on your options before returning to these
instructions ;-).

Usage

There are two ways to use the dwim package: As the command line program
dwim and as a Python API. For details about the Python API please refer to
the API documentation available on Read the Docs [https://dwim.readthedocs.io/en/latest/]. The command line interface
is described below.

Please note that you need to create a profile (see below) before you can use
the program.

Command line interface

Usage: dwim [OPTIONS]

The dwim program is a location aware application launcher. To use it you are
required to create a profile at ~/.dwimrc. This profile is a simple Python
script that defines which applications you want to start automatically, in
which order the applications should start and whether some applications
should only be started given a specific physical location.

The location awareness works by checking the MAC address of your gateway
(the device on your network that connects you to the outside world, usually
a router) to a set of known MAC addresses that you define in ~/.dwimrc.

Every time you run the dwim program your ~/.dwimrc profile is evaluated and
your applications are started automatically. If you run dwim again it will
not start duplicate instances of your applications, but when you quit an
application and then rerun dwim the application will be started again.

Supported options:

	Option
	Description

	-c, --config=FILE
	Override the default location of the profile script.

	-v, --verbose
	Increase logging verbosity (can be repeated).

	-q, --quiet
	Decrease logging verbosity (can be repeated).

	-h, --help
	Show this message and exit.

Creating a profile

To use dwim you need to create a profile at ~/.dwimrc. The profile is a
simple Python [http://en.wikipedia.org/wiki/Python_(programming_language)] script that defines which applications you want to start
automatically, in which order the applications should start and whether some
applications should only be started on a specific physical location. The
profile script has access to functions provided by the dwim Python package.
Please refer to the documentation [https://dwim.readthedocs.io/en/latest/#function-reference] for the available functions. The examples
below show the most useful functions.

	Starting your first program

	Modifying the “is running” check

	Enabling location awareness

	Example profile

Starting your first program

If you’d like to get your feet wet with a simple example, try this:

launch_program('pidgin')

When you’ve created the above profile script and you run the dwim program
it will start the Pidgin [http://en.wikipedia.org/wiki/Pidgin_(software)] chat client on the first run. On the next run nothing
will happen because Pidgin is already running.

Modifying the “is running” check

The default “is running” check comes down to the following shell command line:

Replace `pidgin' with any program name.
pidof $(which pidgin)

This logic will not work for all programs. For example in my profile I start
the Dropbox [http://en.wikipedia.org/wiki/Dropbox_(service)] client using a wrapper script. Once the Dropbox client has been
started the wrapper script terminates so the pidof check fails. The
solution is to customize the “is running” check:

launch_program('dropbox start', is_running='pgrep -f "$HOME/.dropbox-dist/*/dropbox"')

The example above is for the Dropbox client, but the same principle can be
applied to all other programs. The only trick is to find a shell command that
can correctly tell whether the program is running. Unfortunately this part
cannot be automated in a completely generic manner. The advanced profile
example below contains more examples of defining custom pidof checks and
pgrep -f checks.

Enabling location awareness

The first step to enabling location awareness is to add the following line
to your profile:

determine_network_location()

Even if you don’t pass any information to this function it will still report
your current gateway’s MAC address. This saves me from having to document the
shell commands needed to do the same thing :-). Run the dwim command and
take note of a line that looks like this:

We're not connected to a known network (unknown gateway MAC address 84:9c:a6:76:23:8e).

Now edit your profile and change the line you just added:

location = determine_network_location(home=['84:9c:a6:76:23:8e'])

When you now rerun dwim it will say:

We're connected to the home network.

So what did we just do? We took note of the current gateway’s MAC address and
associated that MAC address with a location named “home”. In our profile we can
now start programs on the condition that we’re connected to the home network:

if location == 'home':
 # Client for Music Player Daemon.
 launch_program('ario --minimized')
else:
 # Standalone music player.
 launch_program('rhythmbox')

The example profile below (my profile) contains a more advanced example
combining multiple networks and networks with multiple gateways.

Example profile

I’ve been using variants of dwim (previously in the form of a Bash [http://en.wikipedia.org/wiki/Bash_(Unix_shell)] script
:-) for years now so my profile has grown quite a bit. Because of this it may
provide some interesting examples of things you can do:

vim: fileencoding=utf-8

~/.dwimrc: Profile for dwim, my location aware application launcher.
For more information please see https://github.com/xolox/python-dwim/.

Standard library modules.
import os
import time

Packages provided by dwim and its dependencies.
from executor import execute
from dwim import (determine_network_location, launch_program, LaunchStatus
 set_random_background, wait_for_internet_connection)

This is required for graphical Vim and gnome-terminal to have nicely
anti-aliased fonts. See http://awesome.naquadah.org/wiki/Autostart.
if launch_program('gnome-settings-daemon') == LaunchStatus.started:

 # When my window manager is initially started I need to wait for a moment
 # before launching user programs because otherwise strange things can
 # happen, for example programs that place an icon in the notification area
 # might be started in the background without adding the icon, so there's
 # no way to access the program but `dwim' will never restart the program
 # because it's already running! ಠ_ಠ
 logger.debug("Sleeping for 10 seconds to give Awesome a moment to initialize ..")
 time.sleep(10)

Determine the physical location of this computer by matching the MAC address
of the gateway against a set of known MAC addresses. In my own copy I've
documented which MAC addresses belong to which devices, but that doesn't seem
very relevant for the outside world :-)
location = determine_network_location(home=['84:9C:A6:76:23:8E'],
 office=['00:15:C5:5F:92:79',
 'B6:25:B2:19:28:61',
 '00:18:8B:F8:AF:33'])

Correctly configure my multi-monitor setup based on physical location.
if location == 'home':
 # At home I use a 24" ASUS monitor as my primary screen.
 # My MacBook Air sits to the left as the secondary screen.
 execute('xrandr --output eDP1 --auto --noprimary')
 execute('xrandr --output HDMI1 --auto --primary')
 execute('xrandr --output HDMI1 --right-of eDP1')
if location == 'work':
 # At work I use a 24" LG monitor as my primary screen.
 # My Asus Zenbook sits to the right as the secondary screen.
 execute('xrandr --output eDP1 --auto')
 execute('xrandr --output HDMI1 --auto')
 execute('xrandr --output HDMI1 --left-of eDP1')

Set a random desktop background from my collection of wallpapers. I use the
program `feh' for this because it supports my desktop environment / window
manager (Awesome). You can install `feh' using `sudo apt-get install feh'.
set_random_background(command='feh --bg-scale {image}',
 directory=os.path.expanduser('~/Pictures/Backgrounds'))

Start my favorite programs.
launch_program('gvim')
launch_program('nm-applet')
launch_program('keepassx $HOME/Documents/Passwords/Personal.kdb -min -lock',
 is_running='pgrep -f "keepassx $HOME/Documents/Passwords/Personal.kdb"')
I actually use three encrypted key passes, two of them for work. I omitted
those here, but their existence explains the complex is_running command.
launch_program('fluxgui', is_running='pgrep -f $(which fluxgui)')

The remaining programs require an active internet connection.
wait_for_internet_connection()

launch_program('chromium-browser', is_running='pidof /usr/lib/chromium-browser/chromium-browser')
launch_program('pidgin')
if location == 'home':
 # Mozilla Thunderbird is only useful at home (at work IMAPS port 993 is blocked).
 launch_program('thunderbird', is_running='pidof /usr/lib/thunderbird/thunderbird')
launch_program('dropbox start', is_running='pgrep -f "$HOME/.dropbox-dist/*/dropbox"')
launch_program('spotify')

Location awareness

The location awareness works by matching the MAC address [http://en.wikipedia.org/wiki/MAC_address] of your current
network gateway [http://en.wikipedia.org/wiki/Gateway_(telecommunications)] (your router). I’ve previously also used public IPv4
addresses but given the fact that most consumers will have a dynamic IP address
I believe the gateway MAC access is the most stable unique property to match.

About the name

In programming culture the abbreviation DWIM stands for Do What I Mean [http://en.wikipedia.org/wiki/DWIM]. The
linked Wikipedia article refers to Interlisp [http://en.wikipedia.org/wiki/Interlisp] but I actually know the term from
the world of Perl [http://en.wikipedia.org/wiki/Perl]. The reason I chose this name for my application launcher is
because I like to make computer systems anticipate what I want. Plugging in a
network cable, booting my laptop and having all my commonly used programs
(depending on my physical location) instantly available at startup is a great
example of Do What I Mean if you ask me :-)

Contact

The latest version of dwim is available on PyPI [https://pypi.python.org/pypi/dwim] and GitHub [https://github.com/xolox/python-dwim]. The
documentation is hosted on Read the Docs [https://dwim.readthedocs.io/en/latest/]. For bug reports please create an
issue on GitHub [https://github.com/xolox/python-dwim]. If you have questions, suggestions, etc. feel free to send me
an e-mail at peter@peterodding.com.

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License].

© 2017 Peter Odding.

Function reference

The following documentation is based on the source code of version 0.3.1 of
the dwim package.

dwim

dwim: Location aware application launcher.

	
dwim.DEFAULT_PROFILE = '~/.dwimrc'

	The default location of the user’s profile script (a string).

	
dwim.dwim(profile='~/.dwimrc')

	Evaluate the user’s profile script.

	
dwim.launch_program(command, is_running=None)

	Start a program if it’s not already running.

This function makes it easy to turn any program into a single instance
program. If the default “Is the program already running?” check fails to
work you can redefine the way this check is done.

	Parameters:	
	command – The shell command used to launch the application (a string).

	is_running – The shell command used to check whether the application
is already running (a string, optional).

	Returns:	One of the values from the LaunchStatus enumeration.

Examples of custom “is running” checks:

Chromium uses a wrapper script, so we need to match the absolute
pathname of the executable.
launch_program('chromium-browser', is_running='pidof /usr/lib/chromium-browser/chromium-browser')

Dropbox does the same thing as Chromium, but the absolute pathname of
the executable contains a version number that I don't want to hard
code in my ~/.dwimrc profile :-)
launch_program('dropbox start', is_running='pgrep -f "$HOME/.dropbox-dist/*/dropbox"')

	
class dwim.LaunchStatus

	LaunchStatus enumerates the possible results of launch_program().

It enables the caller to handle the possible results when they choose to do
so, without forcing them to handle exceptions.

	
started = <EnumValue: LaunchStatus.started [value=1]>

	The program wasn’t running before but has just been started.

	
already_running = <EnumValue: LaunchStatus.already_running [value=2]>

	The program was already running.

	
not_installed = <EnumValue: LaunchStatus.not_installed [value=3]>

	The program is not installed / available on the $PATH.

	
unspecified_error = <EnumValue: LaunchStatus.unspecified_error [value=4]>

	Any other type of error, e.g. the command line can’t be parsed.

	
dwim.extract_program(command_line)

	Parse a simple shell command to extract the program name.

	Parameters:	command_line – A shell command (a string).

	Returns:	The program name (a string).

	Raises:	CommandParseError when the command line cannot be parsed.

Some examples:

>>> extract_program('dropbox start')
'dropbox'
>>> extract_program(' "/usr/bin/dropbox" start ')
'/usr/bin/dropbox'

	
dwim.resolve_program(executable)

	Expand the name of a program into an absolute pathname.

	Parameters:	executable – The name of a program (a string).

	Returns:	The absolute pathname of the program (a string).

	Raises:	MissingProgramError when the program doesn’t exist.

An example:

>>> extract_program('dropbox start')
'dropbox'
>>> resolve_program(extract_program('dropbox start'))
'/usr/bin/dropbox'

	
dwim.set_random_background(command, directory)

	Set a random desktop wallpaper / background.

	Parameters:	
	command – The command to set the wallpaper (a string containing an
{image} marker).

	directory – The pathname of a directory containing wallpapers (a
string).

	Raises:	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when the command string doesn’t
contain an {image} placeholder.

	
dwim.determine_network_location(**gateways)

	Determine the physical location of this computer.

This works by matching the MAC address of the current gateway against a set
of known MAC addresses, which provides a simple but robust way to identify
the current network. Because networks usually have a physical location,
identifying the current network tells us our physical location.

	Parameters:	gateways – One or more keyword arguments with lists of strings
containing MAC addresses of known networks.

	Returns:	The name of the matched MAC address (a string) or None when
the MAC address of the current gateway is unknown.

Here’s an example from my ~/.dwimrc involving multiple networks and a
physical location with multiple gateways:

location = determine_network_location(home=['84:9C:A6:76:23:8E'],
 office=['00:15:C5:5F:92:79',
 'B6:25:B2:19:28:61',
 '00:18:8B:F8:AF:33'])

	
dwim.find_gateway_address()

	Find the IP address of the current gateway using the ip route command.

	Returns:	The IP address of the gateway (a string) or None [https://docs.python.org/2/library/constants.html#None].

An example:

>>> find_gateway_address()
'192.168.1.1'

	
dwim.find_gateway_mac()

	Find the MAC address of the current gateway using the arp -n command.

	Returns:	The MAC address of the gateway (a string) or None.

An example:

>>> find_gateway_address()
'192.168.1.1'
>>> find_gateway_mac(find_gateway_address())
'84:9c:a6:76:23:8e'

	
dwim.wait_for_internet_connection()

	Wait for an active internet connection.

This works by sending ping requests to 8.8.8.8 (one of the Google
public DNS IPv4 addresses) and returning as soon as a ping request gets a
successful response. The ping interval and timeout is one second.

	
dwim.have_internet_connection()

	Check if an internet connection is available.

	Returns:	True [https://docs.python.org/2/library/constants.html#True] if an internet connection is available,
False [https://docs.python.org/2/library/constants.html#False] otherwise.

This works by pinging 8.8.8.8 which is one of Google’s public DNS servers [https://developers.google.com/speed/public-dns/]. This IP address was
chosen because it is documented that Google uses anycast to keep this IP
address available at all times.

dwim.cli

Usage: dwim [OPTIONS]

The dwim program is a location aware application launcher. To use it you are
required to create a profile at ~/.dwimrc. This profile is a simple Python
script that defines which applications you want to start automatically, in
which order the applications should start and whether some applications
should only be started given a specific physical location.

The location awareness works by checking the MAC address of your gateway
(the device on your network that connects you to the outside world, usually
a router) to a set of known MAC addresses that you define in ~/.dwimrc.

Every time you run the dwim program your ~/.dwimrc profile is evaluated and
your applications are started automatically. If you run dwim again it will
not start duplicate instances of your applications, but when you quit an
application and then rerun dwim the application will be started again.

Supported options:

	Option
	Description

	-c, --config=FILE
	Override the default location of the profile script.

	-v, --verbose
	Increase logging verbosity (can be repeated).

	-q, --quiet
	Decrease logging verbosity (can be repeated).

	-h, --help
	Show this message and exit.

	
dwim.cli.main()

	Command line interface for the dwim program.

dwim.exceptions

Custom exceptions raised by dwim.

	
exception dwim.exceptions.ProgramError

	Super class for exceptions raised in launch_program().

	
exception dwim.exceptions.CommandParseError

	Raised by extract_program() when a command line can’t be parsed or is empty.

	
exception dwim.exceptions.MissingProgramError

	Raised by resolve_program() when a program doesn’t exist.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dwim	

 	
 	
 dwim.cli	

 	
 	
 dwim.exceptions	

Index

 A
 | C
 | D
 | E
 | F
 | H
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | W

A

 	
 	already_running (dwim.LaunchStatus attribute)

C

 	
 	CommandParseError

D

 	
 	DEFAULT_PROFILE (in module dwim)

 	determine_network_location() (in module dwim)

 	dwim (module)

 	
 	dwim() (in module dwim)

 	dwim.cli (module)

 	dwim.exceptions (module)

E

 	
 	extract_program() (in module dwim)

F

 	
 	find_gateway_address() (in module dwim)

 	
 	find_gateway_mac() (in module dwim)

H

 	
 	have_internet_connection() (in module dwim)

L

 	
 	launch_program() (in module dwim)

 	
 	LaunchStatus (class in dwim)

M

 	
 	main() (in module dwim.cli)

 	
 	MissingProgramError

N

 	
 	not_installed (dwim.LaunchStatus attribute)

P

 	
 	ProgramError

R

 	
 	resolve_program() (in module dwim)

S

 	
 	set_random_background() (in module dwim)

 	
 	started (dwim.LaunchStatus attribute)

U

 	
 	unspecified_error (dwim.LaunchStatus attribute)

W

 	
 	wait_for_internet_connection() (in module dwim)

 nav.xhtml

 Table of Contents

 		dwim: Location aware application launcher

_static/comment-bright.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/file.png

_static/down-pressed.png

_static/up.png

_static/up-pressed.png

